The Importance of Delayed Cord Clamping on Your Banking Decision

The Importance of Delayed Cord Clamping on Your Banking Decision

As a parent considering stem cell banking knowing the options available to you in order to make an educated and informed choice is essential. The American College of Obstetrics and Gynecology (ACOG) has recently introduced new recommendations around delayed cord clamping. Below is additional information on the importance of cord blood banking and what specifically delayed cord clamping is.

Why is cord blood important?

Cord blood from the umbilical cord contains blood that is rich in hematopoietic (blood-forming) stem cells similar to those found in bone marrow.1 The stem cells found in cord blood are essential as they are used in innovative health treatments being practiced today, and can also being used in clinical trials and research that can impact the future of medicine.2 The decision to bank your child’s stem cells can be an investment in the future health of your family.

So what is delayed cord clamping?

  • Delayed clamping refers to prolonging the cutting of the umbilical cord after delivery or until after the placenta is delivered.
  • Cord clamping is typically done within 15 seconds of delivery, whereas delayed clamping can take place 30 to 60 seconds3, or more, after birth.

The impact of delayed cord clamping

  • Delayed clamping allows more blood to transfer from the placenta and umbilical cord to your baby. This provides an opportunity for more of the important blood, rich in important stem cells, to benefit your child.3
    • In full-term infants, delaying the clamping of the umbilical cord can increase blood levels and improve iron stores in the first several months of life.3
    • In pre-term infants, delayed umbilical cord clamping provides significant neonatal benefits including; improved transitional circulation, better establishment of red blood cell volume, and a decreased need for blood transfusion.3
  • Delayed cord clamping may yield a smaller amount of cord blood stem cells.3

It should be noted that delayed cord clamping does slightly increase the risk of your child needing phototherapy for neonatal jaundice due to the increase in blood cells and their breakdown.3

Your healthcare professional will decide what’s best for both mom and baby during delivery. But the decision on when to cord clamp is personal, and one best discussed with your healthcare provider.

Lifebank offers expectant parents additional banking options that are not impacted by the timing of cord clamping. These include placenta blood banking and placenta tissue banking.

Why consider Lifebank and placenta banking?

The placenta blood and placenta tissue are rich in a variety of stem cells including the hematopoietic stem cells found in cord blood (the building blocks for making blood cells) as well as a unique population of stem cells being studied in regenerative medicine.4

Placenta blood and placenta tissue are robust sources of a type of stem cell, known as mesenchymal stem cells (MSC), that have shown huge potential for use in regenerative medicine. Scientists have already discovered that MSCs may be able to repair fractured bones and regrow damaged cartilage. These unique stem cells are also being studied to treat spinal cord injury5, Parkinson’s disease6, Cerebral palsy7, muscular dystrophy8, stroke9 and autoimmune diseases5.

Taking advantage of the opportunity to bank placenta tissue and blood, along with cord blood, allows you to save more unique stem cells should you need them.

Lifebank offers parents the opportunity to maximize the number of stem cells collected by offering collection of stem cells from the cord blood as well as from placenta blood and placenta tissue. This provides expecting parents with several important types of stem cells that may be needed for current and future medical treatments.

When it comes to making the right stem cell banking choice for your family, there is a lot to consider. Lifebank wants to make sure you have all the information you need to make a well-informed decision for your family. Contact us for more information or any questions you may have.


  1. National Institutes of Health. Regenerative Medicine: 2. Bone Marrow (Hematopoietic) Stem Cells. Available at: Accessed Jan. 19, 2017.
  2. Moise K Jr. Umbilical cord stem cells. Obstet Gynecol. 2005;106(6):1393-1407.
  3. American Congress of Obstetricians and Gynecologists. Committee Opinion, Number 684, January 2017. Retrieved January 7, 2016
  4. Harris DT, Badowski M, Shmad N, et al. The potential of cord blood stem cells for use in regenerative medicine. Expert Opin Biol Ther. 2007; 7(9):1311-1322.
  5. Silini AR, Cargnoni A, Magatti A, Pianta S, Parolini O. The long path of human placenta, and its derivatives, in regenerative medicine. Front Bioeng Biotechnol. 2015; 3:162
  6. Harris DT. Cord Blood Stem Cells: A Review of Potential Neurological Applications. Stem Cell Rev. 2008; 4(4):269-274.
  7. Harris DT. Non-haematological uses of cord blood stem cells. Br J Haematol. 2009;147(2):177-184.
  8. Jazedje T, Secco M, Vieira NM, et al. Stem cells from umbilical cord blood do have myogenic potential, with and without differentiation induction in vitro. J Transl Med. 2009;7:6
  9. Bliss T, Guzman R, Daadi M, Steinberg GK. Cell Transplantation Therapy for Stroke. Stroke. 2007;38(suppl 2):817-826